Key results of the molecular structure determination ${ }^{11}$ (Figure 2) are (1) a Mo1-Mo2 single bond distance ${ }^{12}$ of 3.052 (2) \AA, (2) the presence of terminal alkylidene and N -terminal diazoalkane ligands on the same molybdenum, (3) a $\mathrm{Mo} 2=\mathrm{C} 15$ double bond length ${ }^{13}$ of 1.98 (1) \AA for the terminal alkylidene, (4) a Mo2-N1 bond length of 1.74 (1) \AA, a N1-N2 bond length of 1.32 (1) \AA, a Mo2-N1-N2 bond angle of $174.7(9)^{\circ}$, and a $\mathrm{N} 2-\mathrm{C} 16$ bond length of 1.32 (1) \AA consistent with a $\mathrm{Mo} 2 \equiv \mathrm{~N} 1-\mathrm{N} 2=\mathrm{C} 16$ grouping, ${ }^{14}$ and (5) a shift of one carbonyl from Mo2 to Mol to give a $\mathrm{Mo}(\mathrm{CO})_{3}$ group. Both molybdenums acquire 18 -electron configurations, Mol by its array of ligands and Mo2 by the donation of the lone pair on N1 in a dative fashion to give a $\mathrm{Mo2}^{-} \leftrightarrows \mathrm{N} 1^{+}$polarized triple bond. Figure 3 shows a molecular core view approximately down the molybdenum-molybdenum bond; the angle between the alkylidene and diazoalkane ligands is $97.6(5)^{\circ}$, and the three angles around the trigonal alkylidene carbon C15 total 360° within experimental error.
A plausible mechanism for this bridge \rightarrow terminal alkylidene conversion is shown in reaction 2. N-Terminal coordination of

the diazoalkane to one molybdenum leads to an intermediate in which the semi-bridging carbonyl has assumed a bridging position; rearrangement yields an intermediate with terminal alkylidene and carbonyl ligands. The available terminal nitrogen lone pair is then donated to give carbon monoxide and the observed product.

It has been shown that the inherent coordination unsaturation of the $\mathrm{Mo} \equiv \mathrm{Mo}$ triple bond in $\mathrm{Cp}_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{4}$ affords a starting point for the synthesis of a variety of dinuclear complexes. ${ }^{15.16}$ The residual unsaturation in μ-alkylidene complexes of the type $\mathrm{Cp}_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\mathrm{CR}_{2}\right)^{3}$ makes them especially attractive models ${ }^{17}$
(11) Compound 2 crystallizes from a room temperature ether solution in the triclinic space group $P \overline{1}$ (No. 2) with lattice constants $a=12.247$ (5) \AA, $b=14.462$ (7) $\AA, c=11.486$ (5) $\AA, \alpha=113.22(3)^{\circ}, \beta=95.60(3)^{\circ}, \gamma=$ $90.32(3)^{\circ}, Z=2, V=1858$ (1) $\mathrm{cm}^{3}, \rho_{\text {calod }}=1.47 \mathrm{~g} \mathrm{~cm}^{-3}$, and $\rho_{\text {obdd }}=1.45$ $\mathrm{g} \mathrm{cm}^{-3}$ (flotation). The structure was refined to anisotropic convergence on 26 nonhydrogen atoms (isotropic on all others), after removal of calculated hydrogen atom structure factors from the data (2396 reflections with $I>$ $3 \sigma(I)$). The final R value was 5.3 and the weighted R value was 5.4.
(12) (a) Adams, R. D.; Collins, D. M.; Cotton, F. A. Inorg. Chem. 1974, 13, 1086-1090. (b) Klingler, R. J.; Butler, W.; Curtis, M. D. J. Am. Chem. Soc. 1978, 100, 5034-5039.
(13) (a) The $\mathrm{M} O=\mathrm{C}$ double bond distance in $\mathbf{2}, 1.98$ (1) \AA, is appreciably longer than the $\mathrm{Mo} \equiv \mathrm{C}$ triple bond distance of 1.83 (2) \AA found in $(\mathrm{OC})_{5} \mathrm{ReMo}(\mathrm{CPh})(\mathrm{CO})_{4}{ }^{13 \mathrm{~b}}$ but it is somewhat shorter than the $\mathrm{Mo}=\mathrm{C}$ double bond distance of 2.06 (1) \AA in $\mathrm{CpMo}(\mathrm{CO})_{2}\left(\mathrm{GePh}_{3}\right)[\mathrm{C}(\mathrm{OEt}) \mathrm{Ph}] .{ }^{13 \mathrm{c}}$ (b) Huttner, G.; Frank, A.; Fischer, E. O. Isr. J. Chem. 1977, 15, 133-142. (c) Chan, L. Y. Y.; Dean, W. K.; Graham, W. A. G. Inorg. Chem. 1977, 16, 1067-1071.
(14) (a) Formal molybdenum-nitrogen triple bond distances in organoimido complexes show little variation, being approximately $1.73 \AA$. See: Nugent, W. A.; Haymore, B. L. Coord. Chem. Rev. 1980, 31, 123-175. (b) The diazoalkane intraligand distances in 2 compare favorably with values observed in several mononuclear tungsten-diazoalkane complexes, ${ }^{14 c, d}$ which exhibit $\mathrm{N}-\mathrm{N}$ bond distances of $1.31-1.34 \AA$ and $\mathrm{N}=\mathrm{C}$ bond distances of 1.28-1.30 A. (c) Hidai, M.; Mizobe, Y.; Sato, M.; Kodama, T.; Uchida, Y. J. Am. Chem. Soc. 1978, 100, 5740-5748. (d) Ben-Shoshan, R.; Chatt, J.; Leigh, G. J.; Hussain, W. J. Chem. Soc., Dalton Trans. 1980, $771-775$ and references therein.
(15) Curtis, M. D.; Messerle, L.; Fotinos, N. F.; Gerlach, R. F. Adv. Chem. Ser. 1981, No. 155, 221-257.
(16) Curtis, M. D.; Han, K. R.; Butler, W. M. Inorg. Chem. 1980, 19, 2096-2101 and references therein.
of surface-adsorbed alkylidenes since surface metal atoms are also coordinatively unsaturated.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, the National Science Foundation (CHE-7907748), and the AMAX Foundation for support of this research.

Registry No. 1, 80398-83-0; 2, 76114-00-6.
(17) (a) A molybdenum-containing Fischer-Tropsch catalyst with good selectivity for $\mathrm{C}_{2}-\mathrm{C}_{4}$ aliphatic hydrocarbons and superior sulfur tolerance was recently reported. ${ }^{176, c}$ (b) Murchison, C. B.; Murdick, D. A. (to Dow Chemical Company) U.S. Patent 4151 190, 1979; Chem. Abstr. 1979, 91, 41855e. (c) Murchison, C. B.; Murdick, D. A. Hydrocarbon Process. 1981, 60, 159-164.

A Formal [1,3]-Sigmatropic Rearrangement of an Anionic Oxy-Cope System. A Consecutive Mechanism ${ }^{1}$

Tsutomu Miyashi, Atsuo Hazato, and Toshio Mukai*

Photochemical Research Laboratory and Department of Chemistry, Faculty of Science Tohoku University, Sendai 980, Japan
Received September 21, 1981

The thermal [1,3]-sigmatropic rearrangement of the oxy-and related Cope systems ${ }^{2}$ such as anti A or syn A to C is regarded as one of the most useful two-carbon homologation reactions. The mechanism for this simple ring expansion reaction, however, is still ambiguous not only experimentally ${ }^{3}$ but also theoretically. ${ }^{4}$ One possible mechanism is the direct one ${ }^{5}$ where the C_{4} carbon of anti A or syn A directly migrates to the C_{1} position to achieve a formal $[1,3]$-sigmatropic rearrangement of A to C. Alternatively, the indirect mechanism ${ }^{6}$ involves successive [1,3]- and [3,3]-sigmatropic rearrangements where, in the case of anti A, the C_{3} carbon initially migrates to the C_{6} position either with inversion or with retention of configuration to regenerate isomeric Cope systems anti B and syn B, the former of which epimerizes to syn B through syn A by successive [1,3]-sigmatropic rearrangements, and then the ordinary Cope rearrangement of syn B gives C, achieving the indirect and consecutive mechanism (Figure 1). However, difficulties in isolation and detection of regenerated Cope systems such as anti B, syn A, and syn B which often equal anti A in thermal reactivity make the reaction pathway ambiguous and hence it is difficult to discriminate between the two mechanisms.

During our extended studies on the rearrangement ${ }^{7}$ of anionic oxy-Cope systems, we succeeded in isolation of intermediates

[^0]

Figure 1. Direct and indirect [1,3]-sigmatropic rearrangements of A to C in the oxy- and related Cope systems.

Scheme I

involved in the indirect mechanism. In this communication, we report our first observation of the indirect mechanism, including the hitherto unknown anionic [1,3]-sigmatropic rearrangement with retention of configuration and circumambulatory $[1,3]$-sigmatropic rearrangement with inversion of configuration in the anionic oxy-Cope systems incorporated in the bicyclo[4.2.1]nonatriene system.

The systems we chose are 8 -endo-hydroxy-8-exo-vinyl-bicy-clo[4.2.1]nona-2,4,6-triene (1a) and the benzo analogue 3. When $1 \mathrm{a}\left(\mathrm{mp} 56.5^{\circ} \mathrm{C}\right)^{8}$ was treated with potassium hydride (KH) at $24^{\circ} \mathrm{C}$ for 2 min in the presence of 18 -crown- 6^{9} in dry tetrahydrofuran, ketone 2^{10} was obtained quantitatively. Similarly, $3\left(\mathrm{mp} 115^{\circ} \mathrm{C}\right)^{11}$ afforded a quantitative yield of $4\left(\mathrm{mp} 95^{\circ} \mathrm{C}\right)^{12}$
(8) Satisfactory elemental analyses were obtained for all new compounds in this report. The vinyl alcohol la was prepared from bicyclo[4.2.1]nona-2,4,6-trien-9-one and the stereochemical assignment to 1a was derived from Eu(fod) ${ }_{3}$ pseudocontact ${ }^{1} \mathrm{H}$ NMR spectra. 1a: IR (KBr) $3350,3050,2950$, $1410,1340 \mathrm{~cm}^{-1} ; m / e$ (rel intensity) $160\left(\mathrm{M}^{+}, 85 \%\right.$), 145 (100%); UV (cyclohexane) $\lambda_{\max } 220(\mathrm{sh}, \log \in 3.57), 269(3.50) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR (CCl ${ }_{4}, 100$ $\mathrm{MHz}) \delta 2.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.80\left(\mathrm{dd}, J_{1,8}=J_{6},=1.0, J_{1,2}=J_{6.5}=8.0 \mathrm{~Hz}, \mathrm{C}_{1}-\right.$, $\left.\mathrm{C}_{6} \mathrm{H}\right), 5.70-6.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{2}-\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{10} \mathrm{H}\right), 5.35\left(\mathrm{~d}, \mathrm{C}_{7}-, \mathrm{C}_{8} \mathrm{H}\right), 4.90$ (dd, $J_{\text {vic }}=2.0, J_{10.11}=11.0 \mathrm{~Hz}$, cis $\mathrm{C}_{1} \mathrm{H}$), $5.25\left(\mathrm{dd}, J_{\text {vic }}=2.0, J_{10.11}=17.0\right.$ Hz , trans $\mathrm{C}_{11} \mathrm{H}$).
(9) D. A. Evans and A. M. Golob, J. Am. Chem. Soc., 97, 4765 (1975).
(10) Compound 2: IR (neat) $3050,3000,2850,1695,1600,1450 \mathrm{~cm}^{-1}$; m / e (rel intensity) $160\left(\mathrm{M}^{+}, 73 \%\right), 117(100 \%)$; UV (cyclohexane) $\lambda_{\max } 248^{\prime}$ (sh, log є 2.83), 306 (sh, 2.84), 317 (sh, 2.77), 327 (sh, 2.60) nm; ${ }^{1}{ }^{1}{ }^{\max }{ }^{2}$ MR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta 1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{11} \mathrm{H}\right), 2.55$ (dddd, $J_{\text {vic }}=13.0, J_{1,10}=$ $1.5, J_{10.11}=4.0,6.0 \mathrm{~Hz}$, exo $\mathrm{C}_{10} \mathrm{H}$), 3.00 (ddd, $J_{10.11}=6.0,11.0 \mathrm{~Hz}$, endo $\left.\mathrm{C}_{10} \mathrm{H}\right), 3.10\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}\right), 3.63$ (ddd, $J_{1.2}=J_{1.8}=9.0 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}$), 5.60 (ddd, $J_{7.8}$ $\left.=11.0, J_{6,8}=2.0 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 5.83\left(\mathrm{dd}, J_{6,7}=9.0 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right), 5.8\left(\mathrm{dd}, J_{2,3}=\right.$ $\left.10.0 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 5.90-6.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{3}-, \mathrm{C}_{4}, \mathrm{C}_{5} \mathrm{H}\right)$.
Scheme II

under the same conditions. One intriguing feature is that the isomeric ketone 5 was not formed from 3 , indicating that successive [1,5$]$-, with retention of configuration, and [3,3]-sigmatropic rearrangements ${ }^{7}$ to give 5 do not operate, but instead a formal [1,3]-sigmatropic rearrangement of A to C exclusively occurs in 3. The low-temperature preparative scale experiment, however, gained insights into the sequence of this rearrangement. Thus, upon treating 3 with KH at $0^{\circ} \mathrm{C}$ for 5 min in the presence of 18 -crown-6, three isomeric vinyl alcohols, $7\left(\mathrm{mp} 83.5^{\circ} \mathrm{C}\right.$), ${ }^{13} 8$ (mp $134^{\circ} \mathrm{C}$), ${ }^{13}$ and $9\left(\mathrm{mp} 174^{\circ} \mathrm{C}\right),{ }^{13}$ were isolated in 20,24 , and 0.8% yields, respectively, together with ketone $4(24 \%)$ and the recovered 3 (18\%). Furthermore, the gas chromatographic analysis of this reaction revealed that at the initial stage the rapidly decreasing 3 equilibrated with the rapidly forming 7 within $1 \mathrm{~min}, 3$ and 7 then gradually decreased in a state of equilibrium with a slow increase in the amounts of 4 and 8 , and at the final stage only the amount of 4 slowly increased with a slow decrease of the three-component equilibrium mixture of 3,7 , and 8 . That 7,8 , and 9 are intermediates in the formation of 4 from 3 was substantiated by independent treatment of these vinyl alcohols with KH under the same conditions. Similar to 3, 7 rapidly rearranged to give a mixture of $3,7,8$, and 4 , while 8 rather slowly rearranged
(11) The vinyl alcohol 3 was prepared from the corresponding ketone. The stereochemical assignment to 3 was derived from $\mathrm{Eu}(\mathrm{fod})_{3}$ pseudocontact ${ }^{1} \mathrm{H}$ NMR spectra. 3: IR (KBr) $3350,1590,1470,1450,1410,1330 \mathrm{~cm}^{-1}$; UV (cyclohexane) $\lambda_{\max } 232$ (sh, $\log \in 3.62$), 256 (sh, 3.45), 269 (3.59), 276 (3.61), 288 (sh, 3.30) nm; m / e (rel intensity) $210\left(\mathrm{M}^{+}, 38 \%\right.$), 154 (100%); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right) \delta 3.05\left(\mathrm{~d}, J_{1.2}=J_{5.6}=8.0 \mathrm{~Hz}, \mathrm{C}_{1}-, \mathrm{C}_{6} \mathrm{H}\right), 6.08$ (ddd, $J_{2.3}$ $\left.=J_{4.5}=12.0, J_{2.4}=4.0 \mathrm{~Hz}, \mathrm{C}_{2}-, \mathrm{C}_{5} \mathrm{H}\right), 5.88\left(\mathrm{dd}, J_{3.5}=4.0 \mathrm{~Hz}, \mathrm{C}_{3}-, \mathrm{C}_{4} \mathrm{H}\right)$,
 trans $\left.\mathrm{C}_{11} \mathrm{H}\right), 5.35\left(\right.$ dd, $J_{10.11}=18.0 \mathrm{~Hz}$, cis $\left.\mathrm{C}_{11} \mathrm{H}\right)$.
(12) Compound 4: IR (KBr) $17101490,1330,1300 \mathrm{~cm}^{-1}$; UV (cyclohexane) $\lambda_{\max } 248$ (sh, $\log \in 3.51$), 251 (3.65), $270(3.63), 296$ (sh, 2.60), 306 (2.60), 316 (sh, 2.5) nm; m / e (rel intensity) $210\left(\mathrm{M}^{+}, 9 \%\right) 154(100 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right) \delta 4.24\left(\mathrm{~d}, J_{1.2}=10.0 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}\right), 5.80-6.0\left(\mathrm{~m}, \mathrm{C}_{2}-\right.$, $\left.\mathrm{C}_{3}-\mathrm{C}_{4}, \mathrm{C}_{5} \mathrm{H}\right), 3.82$ (ddd, $\left.J_{5,6}=7.0, J_{6,11}=4.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}\right), 2.72(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{10} \mathrm{H}\right), 2.28\left(\mathrm{~m}, J_{\text {vic }}=14.0, J_{6.11}=4.0, J_{10.11}=6.0 \mathrm{~Hz}\right.$, exo $\left.\mathrm{C}_{11} \mathrm{H}\right), 2.10(\mathrm{~m}$, $J_{\text {vic }} 14.0, J_{6.11}=4.0 \mathrm{~Hz}$, endo $\mathrm{C}_{11} \mathrm{H}$).
(13) The stereochemical assignments to 7, 8, and 9 were derived from Eu (fod) ${ }_{3}$ pseudocontact ${ }^{1} \mathrm{H}$ NMR spectra. Compound 7: IR (KBr) 3350, 1480, $1440,1410 \mathrm{~cm}^{-1}$; UV (cyclohexane) $\lambda_{\max } 230(\mathrm{sh}, \log \epsilon) 3.73$), 256 (sh, 3.47), 268 (3.60), 276 (3.62), 286 ($\mathrm{sh}, 3.38$) nm ; m / e (rel intensity) 210 (M^{+}, $12 \%), 155(100 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right) \delta 3.42\left(\mathrm{~d}, J_{1,8}=3.0 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}\right)$, $6.50\left(\mathrm{~d}, J_{4.5}=12.0 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}\right), 5.96\left(\mathrm{dd}, J_{5.6}=8.0 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}\right), 2.88\left(\mathrm{dd}, J_{6.7}\right.$ $\left.=3.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}\right), 5.52\left(\mathrm{dd}, J_{7.8}=7.0 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right), 5.40\left(\mathrm{dd}, \mathrm{C}_{8} \mathrm{H}\right), 6.20\left(\mathrm{dd}, J_{10.11}\right.$ $\left.=10.0,18.0 \mathrm{~Hz}, \mathrm{C}_{10} \mathrm{H}\right), 4.98\left(\mathrm{dd}, J_{\text {vic }}=2.0, J_{10.11}=10.0 \mathrm{~Hz}\right.$, trans $\left.\mathrm{C}_{11} \mathrm{H}\right)$, $5.38\left(\mathrm{dd}, J_{10.11}=18.0 \mathrm{~Hz}\right.$, cis $\left.\mathrm{C}_{11} \mathrm{H}\right)$. 8: IR $(\mathrm{KBr}) 3350,1590,1470,1420$, $1310 \mathrm{~cm}^{-1}$; ÜV (cyclohexane) $\lambda_{\max } 230$ (sh, log є 3.73), 256 (sh, 3.47), 268 (3.6), 276 (3.62), 286 (sh, 3.38) nm; m / e (rel intensity) $210\left(\mathrm{M}^{+}, 13 \%\right), 141$ $(100 \%){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right) \delta 3.40\left(\mathrm{~d}, J_{1,2}=J_{5.6}=8.0 \mathrm{~Hz}, \mathrm{C}_{1}-, \mathrm{C}_{6} \mathrm{H}\right)$, $6.00\left(\mathrm{ddd}, J_{2,3}=J_{4.5}=12.0, J_{2.4}=4.0 \mathrm{~Hz}, \mathrm{C}_{2}, \mathrm{C}_{5} \mathrm{H}\right.$), $5.62\left(\mathrm{dd}, J_{3,5}=4.0\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{3}-, \mathrm{C}_{4} \mathrm{H}\right), 6.34\left(\mathrm{dd}, J_{10.11}=10.0,18.0 \mathrm{~Hz}, \mathrm{C}_{10} \mathrm{H}\right), 5.12\left(\mathrm{dd}, J_{\text {vic }}=2.0\right.$, $J_{10,11}=10.0 \mathrm{~Hz}$, trans C $\left.{ }_{11} \mathrm{H}\right), 5.47\left(\mathrm{dd}, J_{\text {vic }}=2.0, J_{10,11}=18.0 \mathrm{~Hz}\right.$, cis $\left.\mathrm{C}_{11} \mathrm{H}\right)$. 9: IR (KBr) $3350,1480,1350 \mathrm{~cm}^{-1}$; UV (cyclohexane) $\lambda_{\max } 230(\mathrm{sh}, \log \epsilon$ 3.6), 254 (sh, 3.47), 268 (3.58), 275 (3.60), 286 (3.32) nm; m / e (rel intensity) $210\left(\mathrm{M}^{+}, 11 \%\right) 154(100 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right) \delta 3.48\left(\mathrm{~d}, J_{1.8}=3.0\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{1} \mathrm{H}\right), 6.23\left(\mathrm{~d}, J_{4.5}=12.0 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}\right), 5.93\left(\mathrm{dd}, J_{5.6}=8.0 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}\right), 2.90$ $\left(\mathrm{dd}, J_{67}=3.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}\right), 5.58\left(\mathrm{dd}, J_{7.8}=7.0 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right), 5.36\left(\mathrm{dd}, \mathrm{C}_{8} \mathrm{H}\right), 5.85$ $\left(\mathrm{dd}, J_{10,11}=10.0,18.0 \mathrm{~Hz}, \mathrm{C}_{10} \mathrm{H}\right), 4.93$ (dd, $J_{\text {vic }}=2.0, J_{10.11}=10.0 \mathrm{~Hz}$, trans $\left.\mathrm{C}_{11} \mathrm{H}\right), 5.35\left(\mathrm{dd}, J_{\text {vic }}=2.0, J_{10.11}=18.0 \mathrm{~Hz}\right.$, cis $\mathrm{C}_{11} \mathrm{H}$).

Figure 2. Circumambulatory [1,3]-sigmatropic rearrangement of $\mathbf{1 b}$ with inversion of configuration in each step.
to a mixture composed of the same products. On the other hand, 9 afforded 4 as the major product along with a mixture of four vinyl alcohols as the minor products.

Although the formation of detectable amounts of 9 was not clearly observed except in the preparative scale experiments because of its very low accumulation, it is noteworthy that all vinyl alcohols afforded the same products. Moreover, evidence that neigher 5 nor 6 , direct [1,3]-sigmatropic rearranged ketones from 7 and 9 , was formed from any vinyl alcohols is rather surprising if ketone 4 were directly formed from 3 and 8 . Thus, a plausible mechanism for the formation of 4 from 3,7 , and 8 can be proposed as shown in Scheme II, where 4 is formed in the indirect mechanism through 9 which is in equilibrium with 3,7 , and 8 under the conditions employed. In order to gain further insight into the interrelation among vinyl alcohols, reactions and kinetic studies without 18 -crown- 6 were carried out, expecting suppression of high energy pathways of these four [1,3]-sigmatropic pathways. Below $49.5^{\circ} \mathrm{C}$, the rapid equilibrium between 3 and 7 was only observed. For instance, at $49.5^{\circ} \mathrm{C}$, both 3 and 7 equilibrated each other within 15 min , and the formation of the equilibrium mixture of 3,7 , and 8 required prolonged heating for more than 5 h , while the formation of 4 was suppressed even upon prolonged heating of a mixture of 3,7 , and 8 at $64.5^{\circ} \mathrm{C}$. This likely suggests that the addition of 18 -crown- 6^{9} significantly accelerates high-energy pathways such as the more sterically unfavorable inversion pathway from 8 to 9 as compared with those between 3 and 7 and/or the energetically unfavorable retention pathway from 3 to 9 included in the indirect mechanism. Thus, the following activation parameters were obtained for the interconversions between 3 and $7\left(20.2-49.5^{\circ} \mathrm{C}\right)$ and between 7 and $8(41.0-64.5$ ${ }^{\circ} \mathrm{C}$) without 18 -crown- 6 , providing the first detection of the symmetry-forbidden anionic [1,3]-sigmatropic retention pathways ${ }^{14}$ between 7 and 8 which compete with the inversion pathway from 7 to 3 in the rate ratio $k_{\text {ret }} / k_{\text {inv }}=1 / 82.2$ at $49.5^{\circ} \mathrm{C} ; E_{\mathrm{a}}=$ $19.9 \mathrm{kcal} / \mathrm{mol}(\log A=11.6)$ for $3 \rightarrow 7 ; E_{\mathrm{a}}=18.8 \mathrm{kcal} / \mathrm{mol}(\log$ $A=10.7$) for $7 \rightarrow 3 ; E_{\mathrm{a}}=20.6 \mathrm{kcal} / \mathrm{mol}(\log A=10.0)$ for 7 $\rightarrow 8 ; E_{\mathrm{a}}=22.3 \mathrm{kcal} / \mathrm{mol}(\log A=11.2)$ for $8 \rightarrow 7$.

1b
$C_{1}=C_{6}:$
0.700

$C_{1}=C_{6}:$
$C_{2}=C_{5}:$
$C_{3}=C_{4}:$
$C_{7}=C_{8}:$
$(0.26 \pm 0.02) 0$
$(0.15 \pm 0.01) 0$
$(0.13 \pm 0.02) 0$
$(0.15 \pm 0.01) 0$

If the mechanism shown in Scheme II is correct, during the rearrangement of $\mathbf{1 a}$ to $\mathbf{2}$ by successive [1,3]-, with retention of

[^1]configuration, and [3,3]-sigmatropic rearrangements, the competitive [1,3]-sigmatropic rearrangement with inversion of configuration must involve the circumambulation of the C_{9} carbon of $1 a$ which can be seen when $1 b^{15}$ is used. The recovered vinyl alcohol $1 \mathbf{c}^{17}$ isolated after treating 1 b with KH at $20^{\circ} \mathrm{C}$ for 11 min unequivocally indicated the occurrence of the circumambulatory [1,3]-sigmatropic rearrangement with inversion of configuration in each step as shown in Figure 2, supplementing the operation of a consecutive mechanism.

Registry No. 1a, 80434-45-3; 2, 80434-46-4; 3, 80434-47-5; 4, 80434-48-6; 7, 80434-49-7; 8, 80482-66-2; 9, 80447-41-2.
(15) Compound 1 lb was prepared according to the procedure ${ }^{16}$ reported by Paquette. Bicyclo[4.3.0]nona-2,4-dien-8-one was deuteriated with $\mathrm{NaOCH}_{3} / \mathrm{CH}_{3} \mathrm{OD}$. Successive bromination, dehydrobromination, and the addition of $\mathrm{CH}_{2}=\mathrm{CHLi}$ gave $\mathbf{1 b}$.
(16) L. A. Paquette, R. H. Meisinger, and R. E. Wingard, Jr., J. Am. Chem. Soc., 94, 2155 (1972).
(17) The distribution of deuteriums in 1c was obtained from $\mathrm{Eu}(\mathrm{fod})_{3}$ pseudocontact ${ }^{1} \mathrm{H}$ NMR spectra.

Enzymic Reduction of an Epoxide to an Alcohol

Sharon R. Steckbeck, James A. Nelson, and Thomas A. Spencer*
\section*{Department of Chemistry, Dartmouth College Hanover, New Hampshire 03755

Received October 30, 1981}

We wish to report the first example of direct enzymic reduction of an epoxide to an alcohol. ${ }^{1,2}$ Incubation of $24(R), 25$-oxidolanosterol (1) with standard S_{10} rat liver homogenate (RLH) ${ }^{3}$ results in formation of $24(R)$-hydroxycholesterol (2). Evidence is presented below which indicates that this transformation does not occur via an intermediate 24 -keto steroid. ${ }^{2}$
In connection with our previous demonstration ${ }^{4}$ that squalene $2,3(S) ; 22(S), 23$-dioxide is converted efficiently by RLH to $24-$ (S), 25 -epoxycholesterol (3), we wished to establish that 24 (5), 25 -oxidolanosterol (4) would also be converted by RLH to 3. Preparation of $\left[2-{ }^{-3} \mathrm{H}\right] 4$ required separation by preparative TLC ${ }^{5}$ of a mixture of the known ${ }^{6}$ acetates of $\left[2-{ }^{3} \mathrm{H}\right] 4$ and $\left[2-{ }^{3} \mathrm{H}\right] 1^{7}$ followed by saponification. Incubation of the $\left[2{ }^{-} \mathrm{H}\right] 4$ with RLH for 30 min afforded 18% of product with the TLC $^{5} R_{f}$ value of 3 , plus 45% of unreacted 4 . The identity of 3 was confirmed, as before, ${ }^{4}$ by LiAlH_{4} reduction to 25 -hydroxycholesterol (5), isotopic

[^2]
[^0]: (1) Organic Thermal Reaction, 52. No. 51: K. Sato, Y. Yamashita, and T. Mukai, Tetrahedron Lett., 5303 (1981).
 (2) The oxy- and related Cope system includes the oxy- $(\mathrm{R}=\mathrm{H})$, the methoxy- $\left(\mathrm{R}=\mathrm{CH}_{3}\right)$, the siloxy- $\left(\mathrm{R}=\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, and anionic oxy- $(\mathrm{R}=\mathrm{Na}$, K , and Li) Cope systems. The discussion is restricted only for the rearrangement of A to C, in which the new bonding occurs between the C_{1} and C_{4} positions.
 (3) See, for the oxy-Cope system, (a) J. A. Berson and M. Jones, Jr., J. Am. Chem. Soc., 86, 5017, 5019 (1964); for the methoxy-Cope system, (b) J. A. Berson and E. J. Walsh, Jr., ibid., 90, 4732 (1968); (c) J. A. Berson, T. Miyashi, and G. Jones, II., ibid., 96, 3468 (1974); for the siloxy-Cope system, (d) R. W. Thies, ibid., 94, 7074 (1972); (e) R. W. Thies and J. E. Billigmeier, ibid., 96,200 (1974); for the anionic oxy-Cope system, (f) R. W. Thies and E. P. Seitz, J. Chem. Soc., Chem. Commun., 846 (1976); (g) R. W. Theis and E. P. Seitz, J. Org. Chem., 43, 1050 (1978); see also ref 7.
 (4) S. Inagaki, T. Minato, H. Fujimoto, and K. Fukui, Chem. Lett., 89 (1976).
 (5) The direct mechanism includes (i) a concerted direct C_{4} carbon migration to the C_{1} position of A via processes such as [1,3]-sigmatropic, with retention of configuration, ${ }^{36}$ and multicyclic interaction ${ }^{4}$ pathways and (ii) a nonconcerted migration via processes such as diradical ${ }^{3 \mathrm{a}}$ and ionic ${ }^{38}$ pathways.
 (6) The indirect mechanism was tentatively proposed for anionic oxy-Cope systems. ${ }^{7}$ See also ref 3d, e, g.
 (7) T. Miyashi, A. Hazato, and T. Mukai, J. Am. Chem. Soc., 100, 1008 (1978).

[^1]: (14) The symmetry-forbidden [1,3]-sigmatropic rearrangement with retention of configuration has been detected in pyrolyses of several "neutral" systems and discussed in detail by Berson. See J. A. Berson, Acc. Chem. Res., 5, 406 (1972), and references cited therein.

[^2]: (1) Dixon and Webb (Dixon, M.; Webb, E. C. "Enzymes", 3rd ed.; Academic Press: New York, 1979) list no enzyme which effects this conversion.
 (2) Siekmann, Disse, and Breuer (Siekmann, L.; Disse, B.; Breuer, H. J. Steroid Biochem. 1980, 13, 1181-1205) claim that incubation of $16 \alpha, 17$-epoxyprogesterone (i) with rat liver microsomes affords 5% of 16β-hydroxyprogesterone (ii) and suggest that this conversion proceeds via 16 -oxoprogesterone; i \rightarrow ii obviously cannot be a direct epoxide reduction.
 (3) RLH was prepared according to Popjak (Popjak, G. Methods Enzymol. 1969, 15, 438-440). Incubations were conducted as follows. To 5.0 mL of S_{10} RLH, without addition of coenzymes, was added $25-55 \mu \mathrm{~g}$ of purified ${ }^{3} \mathrm{H}$-labeled substrate (specific activity ca. $38000 \mathrm{dpm} / \mu \mathrm{g}$) dissolved in ca. 50 $\mu \mathrm{L}$ of an aqueous solution containing $70-100 \mathrm{mg}$ per mL of Triton WR 1339 (Ruger Chemical, Irvington, NJ). The resulting mixture was incubated at $37^{\circ} \mathrm{C}$ for 60 min unless a different length of time is specified in the text. All incubations were run at least in duplicate.
 (4) Nelson, J. A.; Steckbeck, S. R.; Spencer, T. A. J. Biol. Chem. 1981, 256, 1067-1068.
 (5) TLC analyses were performed on LK5D silica gel plates (Whatman, Inc., Clifton, NJ); preparative TLC plates were prepared with Silica Gel 60 PF $254+366$ (EM Laboratories, Inc., Elmsford, NY). Various ratios of ether-hexane were employed as eluent, unless noted otherwise.
 (6) Boar, R. B.; Lewis, D. A.; McGhie, J. F. J. Chem. Soc., Perkin Trans. l 1972, 2231-2235
 (7) $\left[2-{ }^{3} \mathrm{H}\right]$ Lanosterol, specific activity $=38000 \mathrm{dpm} / \mu \mathrm{g}$, prepared by treatment of the corresponding ketone with acidic tritium oxide in THF, by the method of Nadeau and Hanzlik (Nadeau, R. G.; Hanzlik, R. P. Reference 3 , pp $346-349$) was converted to the mixture of acetates of $\left[2-{ }^{3} \mathrm{H}\right] 1$ and [$\left.2{ }^{3} \mathrm{H}\right] 4$ by the procedure given in ref 6 .

